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The Quasicrystal Model of 
Rotational Brownian Motion 
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The quasicrystal model of the rotational Brownian motion in a liquid has 
been studied. The probability distribution of orientations of a Brownian 
particle is given in the form of a series of generalized spherical functions. 

KEY W O R D S :  Rotational Brownian motion; liquid; probability distribution 
of orientations; model of Frenkel. 

Three principal models of  rotational Brownian motion are studied theoreti- 
cally. They are (i) rotational diffusion, (ii) rotational displacements by 
rotations at random angles, (iii) rotational diffusion taking account of  
inertial effects. The theory of rotational diffusion has been developed by 
Perrin, (1) Furry, (2) Favro, (a) Valiev and Eskin, (~) and Valiev. (5) Beginning 
with the work by Debye (G) on dielectric relaxation and by Bloembergen 
et  al. (7) on nuclear magnetic resonance, this theory has been used with 
variable success for the interpretation of different physical phenomena in 
liquids. 

The problem of rotational displacements is worked out in Ref. 8, and 
various works (9-1a) have dealt with applications of this problem. Valiev (1~) 
has suggested a method of experimentally defining Brownian motion, i.e., 
the experimental determination of the rotation angle for a single rotational 
jump. This method was employed (13,15) for the study of Brownian rotation 
in liquids. 

The theory of rotational diffusion including inertial effects was developed 
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by Steele. a6) According to Steele, the Brownian rotation of molecules, when 
the intervals of observation are small, appears to be inertial rotation, trans- 
forming into rotational diffusion as the intervals increase in size. Steele's 
interpretation of Brownian rotation was employed in a number of works on 
dielectric and magnetic relaxation and infrared absorbtion. It is important to 
emphasize, however, that the Steele theory does not correspond to the 
conventional idea of the Brownian motion of particles in condensed media, 
introduced for the first time by Frenkel. ~lv~ According to Frenkel, the motion 
of molecules in a liquid (both translational and rotational) consists of 
oscillations in transient equilibrium positions and jumps from one kind of 
equilibrium position into another. This description corresponds to the 
quasicrystal model of the liquid. In the Steele theory inertial rotation is 
suggested in place of rotational oscillation. 

The present work introduces a new version of the theory of the rotational 
Brownian motion of molecules in liquids. The theory is based on Frenkel's 
ideas and includes all the basic elements of the quasicrystal model of the 
liquid. While the further elaboration of the theory of the rotational Brownian 
motion of molecules in condensed media is an urgent problem, various 
papers do not even mention it for instance, (see Fabelinsky's workaS~). 
The author believes that the quasicrystal model of the liquid must become 
the basis for theoretical reasoning in this area. 

Rahman e t  al.  a9) treated translational Brownian motion in the quasi- 
crystal model. It is noteworthy that the calculations of effective differential 
cross sections for slow neutron scattering in water and liquid lead made on 
the basis of the quasicrystal model are in good agreement with the 
experiment. 

For the consideration of the quasicrystal model of rotational Brownian 
motion the same principles apply as those used for the study of the quasi- 
crystal model of translational Brownian motion. The mathematical notation 
suggested by the author elsewhere ~s,9) will also be used in the present 
work. 

It is known a6~ that when dynamic effects are present the Brownian 
motion of particles (molecules) cannot be described by the diffusion equation. 
In this case the distribution of coordinates (orientations in particular) of the 
Brownian particle can be found from either the Einstein-Fokker-Planck 
equation or the generalized Mori-, Oppenheim-Ross 12~ equation. We use 
the latter equation, the rotational analog of which has the following 
appearance: 

~w/~t = v ~ .  D .  V~W (1) 

where W is the probability distribution for orientations at time t; E is the 
projection aggregation of the Ei vectors determining the orientation; D is 
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the tensor whose components are related to correlation functions of the 
angular velocity (o~(0)m5(t)) by the relationship 

t 

D~j(t) = fo (w~(O) c~j(t)) dt (2) 

We select the moving frame of reference attached to the molecule in such 
a way that the tensor Dij(t) becomes diagonal; Eq. (1) simplies: 

3 

~W/~t = Z Dii(t) ~W/Oe~ 2 (3) 
i = 1  

When deriving W from (3) it is convenient to transform from the variables 
ei to the Euler angles % 0, r The resultant expression looks simpler when 
D~x = D v v  (this takes place when the friction coefficient tensor represents 
an ellipsoid of rotation(16): 

~W D~(t) I ~2W ~W • 1 ~2W 
~--t- -- ~0 ~ + (cot 0) T0- ~ sin 2 0 ~ 2  

D,~(t)] azW 2(cot 0) azW I [Lcot 2 0 + D~(t) J er 2 eq) ~b t + (4) 

The solution of (4) is found as the decomposition of generalized spherical 
functionsC21): 

W(g(t), g(0)) = ~ C,~n(t) T ~ ( %  0, ~b) (5) 
t m n  

where g is the aggregation of  the three Euler angles. Substituting (5) into (4), 
we find 18,91 

W(g(t), g(0)) = ~ 21 + 1 ]W~(g0) F~m(t) T~,,~(g) (6) 
8~ z l?nn 

For the simplest case, when the tensor Dij is spherically symmetric 
[Dii(t) = D(t), i = x, y, z], we have 

Fz~(t)= exp [--l(l + l) fo~D(t)dt] (8) 

When t ~ oe integral f~ D(t) dt --+ Dt, where D is the coefficient of rotational 
diffusion, and W(g(t), g(0)) in (6) transforms into a fundamental solution 
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of the rotational diffusion equation (4). Now we shall set about calculating 
D(t). 

3. For the sake of simplicity, let us assume that the molecule parti- 
cipating in the Brownian motion is a spherical top with moment of inertia L 
This assumption reduces the problem of the random rotation of a molecule 
with three degrees of freedom (the center of mass of the molecule is assumed 
fixed) to one-dimensional problem with an angular parameter ~:. 

The quasicrystal model of rotational Brownian motion is constructed 
using the assumption that the angular displacement ~: can be represented as 
the superposition of statistically independent displacements ~:i(v~, t) anal- 
ogous to normal coordinates (modes) in solids. For modes with frequencies 
v~ less than some critical frequency v', the displacements ~:~ satisfy the equa- 
tion 

~ q-/3~ = (1/I) M,(t) (9) 

where Mi(t) is rapidly fluctuating force affecting the molecule and /3 is a 
friction coefficient similar for all modes with vi < v'. For modes with 
frequencies v~ greater than v' but less than the finite frequency Vv, the ~:i 
satisfy the equation 

~ + / 3 ~  + v2~ = 0/1) M~(t) (lO) 

It is apparent that the rotational motion described by Eq. (9) is rotational 
diffusion. Equation (10) describes forced rotational oscillations with damping. 
The finite frequency VD for the solid coincides with the Debyl characteristic 
frequency for orientational oscillation. We assume that 

/3s = 2yvs (11) 

where 7 is a parameter of the theory. For the sake of simplicity, assume also 
that the density of normal modes p(v 0 satisfies the Debye parabolic law: 

p(v~) = 3Vi2/VD ~ 02) 

The important feature of (12) is that p(vr is monotone decreasing to zero 
as v~--+ 0. In a solid (in a molecular crystal) p(v 0 in the form of (12) is 
unapplicable since in this form, as was shown by Anselm and Porfirieva ~22) 
sheer orientational oscillations with small frequencies are not present. In the 
liquid, however, due to the presence of rotational reorientation (diffusion), 
the existence of orientational oscillations with small frequencies does not 
cause any problem. Hence in liquids the distribution (12) may be expected to 
reflect at least qualitatively the frequency distribution of orientational 
oscillation. The solution of Eqs. (9) and (10) can be obtained from Chan- 
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drasekhar (2~ and Wang and Uhlenbeck. (24) The correlation function for 
angular velocity for (10) is 

@oi(0) coi(t))r = OcT/I) e-~#/~[cos vlt -- (fii/2vx) sin vlt] (13) 

where vl = (v~ 2 - -  kfli2) 1/2. Correspondingly, for Eq. (9) we have 

(r r = (KT/I)e -~t (14) 

The parameter  v' differentiates between diffusional and oscillational modes. 
For  v' = v D rotational motion is of  a pure diffusional character, for v' = 0 
it has a damped rotational oscillational character. 

Averaging expressions (13) and (14) according to the Debye distribution 
gives 

(o~i(0) o,~(t))~ = f f  p(~3(o, d0) o,~(t)) d n  

__ KT [( v_~_] e_~t + (COS F1 t - -  Fsinv l t )e_r~tv i  2 dvi2 ] 
I t \ V D /  VD zJ~" 

(15) 
where/~  is determined f rom the relationship Vv~ = Ful ; moreover, 

1 + / - 2  = (1 - -  ~2)-1  (16)  

From Eqs. (2) and (5) we obtain for D(t) 

D(t) = (~cT/1)[(v'/vn) 3 (1//3)(1 - -  e -e~) + 3(F/roy) a a(t)]  (17) 

where 

a ( t )  = c (v ' ,  t)  - G(~D,  t)  (18) 

e-vyt 

+ (1 + F2)t 

From (17) it is seen that when t--~ O, D(t)--~ O. When t increases, D(t) 
oscillates, asymptotically approaching the magnitude D* determined by 
the relation 

D *  = (xTf~I)(oo'l~o~,) ~ (20) 

For  co' = o2D, D* coincides with the rotational diffusion coefficient. I t  is 
worth noting that D(t) -+ 0 when t --~ 0 or t --~ ~ .  For  intermediate values 
of  the argument G(t) oscillates. 

822]8[2-6 
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Relations (6), (7), and (17)-(19) determine the required orientational 
probability distribution of the Brownian particle (molecule) for the quasi- 
crystal model of rotational Brownian motion. The calculation of correlation 
functions, using the distribution obtained, for random functions of orienta- 
tion and their Fourier transforms can be performed on a computer. 

4. The quasicrystal model considered in this paper is believed to be 
the most realistic of all the existing models of Brownian rotational motion 
and should be of extreme importance for the consideration of a number of 
phenomena in liquids, including nuclear magnetic and dielectric relaxation, 
slow neutron scattering, and the M~ssbauer effect. Reconsideration of these 
phenomena with the aid of the present theory could lead to new, interesting 
results. 
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